Optical design of a compact AR system based on the pancake lens

David Kessler
David Kessler
Kessler Optics & Photonics Solutions. Ltd.

- 24 years at Kodak Research Labs running an optical design team
- Using Zemax extensively
- 99 granted US patents
- Design for and consulted so far to 20 AR/VR companies.
Agenda

• AR/VR Customers - initial requirements
• Choice of architecture
• Artifacts!
• A design example for a bird bath 60° FOV
• The design of a pancake based AR
• Modeling issues
 • Merit functions
 • Modeling of wire grid elements
 • Conversion to non sequential
What does everyone want? (2013)

“Oakley look”. i.e., thin & small optics
Augmented imaging preferably an optical see-through channel
Low cost & small image generators (OLED, LCOS, micro-LEDs…)
Wide field of view 30° deg to 110° full diagonal field
Large eye box ~10 mm diameter, for eyeball movement + loose alignment
Large eye relief > 20 mm, for lash clearance and prescription glasses
High resolution ~ SXGA (1280 x 1024) or higher
Low distortion < 2%
Bright hundreds of Cd/m² indoors, thousands outdoors
Artifact free; no “dirty windows”; no raster; no sunlight scattering; no color shading; no interference fringes et.

Low weight
Other: eye tracking; battery life; connectivity….

Bottom line: you can’t get them all. Let’s get the important ones and trade off on the others:

Oakley Thump = Sunglasses+MP3
NEDs: categories of optical design forms (2013)

- Magnifiers i.e. eye piece + image generator
- Relay based NEDs
- Monocentric system
- “Pancake” designs : on axis folded by polarization means
- Pupil splitting :
- Segmented (or tiled) NEDs:
- Other: Foveated; Fiber scanning; Retina scanners; etc.
The core of the combiner design difficulty

The powered combiner such an ellipsoid can easily relay the pupils centers when their centers are at the ellipsoid foci. However, it cannot by itself maintain the beam collimation at its power changes over the field and the large off axis aberrations have to be corrected by the remaining optics.
Pilot training HMD using symmetrical elements

The designs are based on the “Nodal Theory” by Thompson and Shack which shows that the aberrations of the tilted combiner can be compensated by a system using tilted symmetrical components which does not result in new aberrations, but just adds new field dependencies.

Eye Relief > 50 mm
Eye Box 15 mm
FOV 65 deg H, 60 deg V
SXGA

"Pancake " NED designs- the importance of symmetry

On axis designs folded by polarization means

SXGA
60° FOV
10mm Eye box
24 mm Eye Relief
problems: efficiency ~ 6% and usually not (optical) see through
Pupil splitting designs
(also: pupil expanders and dilated optics)

We want an optical system to project into the eye with :
* Low F/number (= high Numerical Aperture) for efficiency
* large eye box
* Short focal length for large field and small optics

Image source:

\[
\text{Eye box} = 2f \times \text{NA}
\]

\[
\text{FOV} = \frac{S}{f}
\]

However, short focal length means small eye box, so we use a short focal length and get a small exit pupil and then expand it by replication to fill the eye box.
Conservation laws and invariants

Etendue = $A \Omega$

where $A = \text{area}$

$\Omega = \text{projected solid angle} = \pi \times (\text{NA})^2$

$P = B^*A^*\Omega$,

where $P = \text{power, in lumens or Watts}$

$B = \text{luminance in Cd/m}^2 \text{ or Nits}$

The three conversion laws (when there is no pupil expansion or diffusion)

$P' = P$ \hspace{1cm} \text{energy conservation}

$A' \Omega' = A \Omega$ \hspace{1cm} \text{Etendue invariance,}$

$B' = B$ \hspace{1cm} \text{Brightness theorem}$

When we diffuse at the image or expand the pupil:

$P' = P$ \hspace{1cm} \text{energy conservation}$

$A' \Omega' > A \Omega$ \hspace{1cm} \text{Etendue is increased}$

$A' > A \hspace{1cm} \text{for pupil splitting or pupil expansion}$

$\Omega' > \Omega \hspace{1cm} \text{diffusion expansion at an intermediate image}$

$B' < B$ \hspace{1cm} \text{Brightness decreased}$
Image artifacts have to be considered in designs:
The “Dirty windshield” artifact

Sunlight scattered off structures and discontinuities on the windshield or in the context of AR system - structures on the combiner.
The shimmering artifact

See-through: SXGA; 50° diagonal; 10 mm Eye Box; 23mm Eye Relief; 0.78” OLED

Two ways to design for low shimmering system:
1. to optimize use the full eye box- may be an overkill since the eye is a sub aperture of the eye box at any given position.
2. To use multi configurations for the sub apertures at different location within the eyebox and include chief ray deviations in the merit function.
Lasers are great being so bright because their etendue is so small but to reduce speckle some of the means used increase the etendue.
Tiling artifacts

LED displays are usually assembled of 6” x 6” modules. Concealing tiling artifacts for limited FOV is relatively easy. Concealing over the full FOV is not.
Color artifacts:
Latest shoot out between Lumus Maximus and Hololens II

From Karl Guttag blog- there are differences in resolution and field, but the color artifacts are quite noticeable on the Hololens II
A design example of Large FOV bird bath + relay configuration presented on the 6/9/2021 Zemax Summit event.

The main specifications for this design are:

1. The field of view of 60° by 40° (70° diagonal)
2. The eyebox of 10 mm diameter
3. Eye relief (from the eye to the closest part of the splitter) > 20 mm
4. Resolution – need to resolve the 7.2 microns pixels of the OLED.
5. Maximize brightness in NITS using a customer chosen 3000 nits OLED.
6. No obscuration of the see through except for looking above the 40 degrees field since one application is for patients with macular degeneracy
7. Reduced components complexity (no free-forms at least initially) to allow relatively short build.
8. Reasonable esthetics- but some size flexibility there
9. Use the customer chosen 2560 x 2560 pixels OLED 3000 NITs
10 mm gaussian apodised eyebox, Conic combiner
Stop at prism hypotenuse to make the prism smaller.
The final design shown on a head.
RMS spots and lateral color

Per color the spots are within the 7.2 μ of the OLED. Lateral color can be digitally corrected.
Shootout of the $60^\circ \times 40^\circ$ birdbath Hololens II
Optical design of a **compact**, large-field AR system based on the pancake lens

- Evolution of the design
- The requirements “negotiation” process
- Choice of architecture
- The design process- considerations ; issues encountered ; performance
- Non sequential design
- Interface with the mechanical designers
- Performance
The evolution of the Amalgamated Vision “see above” system

Initial requirement: no optics, just a close by scan mirror to be placed closer then 16 mm away where the augmented channel is not interfering with the see through and the prospective user- a surgeon will be looking down to see it.

Adding a simple relay from the scan mirror to the eye to increase the field and prevent beam wondering on the iris. The eyebox is the size of the mirror about 1 mm with a 1:1 relay. The relay images the scan mirror onto the iris and collimates the beams focused on a curved focal surface in front of the relay.

Using a Steinheil triplet with increased field to 24°

Changing the relay into a pancake lens and increasing the FOV to about 43° x 24°. Still with a small eyebox. Later we will show how the eyebox was increased to about 8 mm diameter.
The system as presented by Amalgamated Vision (https://www.amalgamatedvision.com/)
2020 CYCLE | FORUM
OCTOBER 1-2 | VIRTUAL EVENT

CONGRATULATIONS WINNERS!
AMALGAMATED VISION | MOJO VISION | OTOLI

ENVISION2021
The Original Pancake lens collimator
designed for a CRT image generator

Reflective polarizer + QWP

50% transparent

Main problem: not efficient – max theoretical 25% . Possible Solution: lasers or micro LEDs
Pancake lenses becoming more popular

https://www.youtube.com/watch?v=uUdZFge6ldI
AR companies' partnerships with μLED companies

WaveOptics Announcing a "Strategic Supplier Partnership" with Jade Bird Display.

WaveOptics is announcing a strategic partnership with JBD for their 0.13" VGA (640x480 pixel) green-only MicroLED microdisplay. To some degree, this simply makes it official (more on the precursors in a bit). WaveOptics has named the associated development kit "Leopard." The development kit version is going to support 27-degrees FOV, monocular (right eye only available), and with (only) 4-bits (16-shades) of green. It is battery powered and free of cables.

Vuzix and Plessey Enter into a Long-Term MicroLED Supply Agreement
Sol-Grid Nano-Structure
Shown here on the concave surface of a lens substrate with both Polarization (green) and Anti-Reflective layers (black).

Electron Micrograph images of actual Nano Grid Structures
Pancake lens used as relay of the scan mirror to iris

Total FOV 43° by 25°
0° incidence into the scan mirror
Layout from a collimated RGB beam to the iris

All curved surfaces centered on the scan mirror or the iris
Exploded view and polarization propagation

Polarized RGB input from a fiber optic

Scan mirror

PBS

QWP_1

Input lens

QWP_2

Doubly concave

WG surface

3.5 mil air gap

cemented

QWP_3

Plano convex lens

50/50 coating

Plano concave Output lens
Using the input PBS reduce the keystone distortion and smile generated by the scan mirror.

The 1:1 pancake lens itself introduces no distortion (or coma for all its orders).

Note: the distortion could be further reduced with aspherics on the entrance and exit pancake surfaces.
Enlarging the eyebox

Placing a diffuser= NA expander at the curved input focal surface
Resolution with expanded pupil

Note: in this sequential analysis we use fields for the different scan angles. In the system analysis including the input beam shaper, the PBS and the scan mirrors—we use multi configurations for the different scan angles.

Spot sizes at the “retina” with a test lens with f=21mm. Thus 21μ=1mr and 6.2μ=1’
Enlarging the field of view to 84^0
Pancake lens isomers

All isomers need to have two QWPs.

1. Curved 50/50 surface followed by the flat reflective polarizer (the preferred embodiment)

2. flat reflective polarizer followed by a curved 50/50 surface - half of the light is directed to the eye and needs to be blocked with a circular polarizer

3. flat 50/50 surface followed by a curved reflective polarizer

 Curved reflective polarizer patented by www.sol-grid.com

4. Curved reflective polarizer followed by a flat 50/50
On merit functions

We usually start with **RMS spots**
We really usually want good MTFs
RMS spot are related to the slope of the MTF curves at MTF origin

As we get closer, we switch commonly to wavefront to get better MTFs. This is because the **Strehl Ratio** is representing the volume under the OTF surface and the Strehl Ratio for a corrected system is related to the wavefront variance through the Marechal relation.

But: if the system final system SR is not going to be better than about .8 then the Marechal relation may not hold and using the wavefront may not result in improved MTFs so we may have to add say some **MTF operands** or just use the **SR operand**.
Converting Sequential to non sequential on Zemax

• Generally, the conversion is easy either by using the Zemax utility “convert to NSC group” or manually
• How to model wire grid polarizer in NS?
• How to a Jones element for large angles
• How to convert Q polynomials to NS
Modeling of a wire grid polarizer on Zemax

How to model the wire grid splitter on Zemax?

1. DBEF efficiency numbers are not accurate (as the Zemax manual says) at large skew angles.
2. The usual S and P definition do not work either since **S and P are local coordinates** for a specific incident angle and the wire grid works on the **global x and y coordinates**

3. **Lumerical and the Zemax_interoperability_metalens_initial.lsf**
 I don’t design meta lenses or wire grids. I buy and use them and have their specification say from Moxtek. I want to plug the specifications as I do with coating tables when I get a coating specs. When I design Wire Grid polarizers I happen to use **GSOLVER** not Lumerical

4. My non-optimum solution: verify the NS design with a lab set up
Breadboard

- Mirror at the iris rotated 15 degrees to obtain the 30 deg FOV in x
- Moxtek PBS at 36 degrees about x
- Wooden holder to hold the moxtek at 36 degrees
- Power meter probe
- My trusted old power meter
- Laser
- Glan-Thompson polarizer allowing polarization in the y direction
- Mirror simulating the combiner
- QWP film double path
Non sequential model

Scam mirror and its driver

Wire grid input splitter

Splitter substrate aberration compensator

Collimated RGB beams

Input beam objective

Curved NA expander

Pancake lens

eyebox

20 mm
The NA expander modeling

This is still work in progress where we explore 3 main possibilities
1. Curved diffusers
2. One sided curved multi lens arrays in hexagonal packing
3. Two sided curved multi lens arrays in hexagonal packing as per the Hakan reference below

The issue at hand is to provide the divergence needed but avoid the visibility of the expander microstructures (without resorting to dithering the expander) and provide for relatively uniform eyebox exposure.

Iris exposure as the beam scans a few lenslets within one pixel at the NA expander made of one sided MLA

Reference: Microlens-array-based exit-pupil expander for full-color displays
Hakan Urey and Karlton D. Powell
Q aspherics on non sequential model

* The latest update has added Q-Surface not a lens though
* Use the aspheric tool in sequential to convert from the sequential Q to the standard
* Use these coefficients with the even aspheric lens object.
* If more than 16 coefficients are needed - use the Odd Extended Aspheric Lens and kill the odd terms.

OR: lately I learned that I can use the new NS Q surfaces with the Compound lens object which lets you place the Q-Surfaces on its input and output surfaces.
Interfacing with the mechanical designers

• I am not currently using the LensMechanix on Zemax- I am a bit more old fashioned and usually create the STP or IGES files and send to the mechanical designers and then import their designs in my non sequential and look for say ghosts
Thank you for listening.

Questions?

David Kessler
Kessler Optics & Photonics Solutions. Ltd.
Dave.Kessler@KesslerOptics.com
585-734-5294
Q&A Session will now begin.